Choosing the proper gas and gas equipment in the laboratory, Part 2: Relationship between gas purity and laboratory analyzers

Michel Gastiger and Benjamin Jurcik

as purity requirements are directly related to analyzer requirements and the field of use or the working domain. For example, Part 1 of this paper¹ illustrated that high-purity gases such as ALPHAGAZ 2 (AIR LIQUIDE Corp., Paris, France) and dedicated equipment must be used and implemented to analyze low-level concentration samples (e.g., <0.1 ppm) no matter which GC detectors are used. While it is evident that extremely high-purity gases can be used for measurements requiring a higher degree of precision, the reverse is not true. As a result, the authors' selection criteria for gas and material is to u se the grades of gas and material necessary to maintain the good working condition of the analyzer and to provide the needed analytical precision.

This paper applies the same logic for the other most common analyzers in the laboratory. For each, the concentration domain to be analyzed will be indicated and the grade of gas recommended will be given. In regard to the grade of gas, dedicated equipment will be chosen.

Analyzers requiring gases have been segmented into the following areas: 1) emission spectroscopy, 2) absorption spectroscopy, 3) mass spectroscopy, 4) thermal analysis, 5) liquid chromatography or supercritical fluid chromatography, 6) surface analysis, 7) gas analysis, and 8) other analysis. Since gas chromatography is the largest analytical technique that uses gas, the relationship between gas purity and chromatography detectors has been described in detail.¹

For each of the analytical techniques mentioned above, a grade of gas is recommended in relationship to the level of concentration of the sample.

A word of caution is needed: The levels of concentration (in mol/mol or wt/wt) of the sample to be analyzed are indications, not absolute values; there are always specific conditions that may arise requiring the use of a higher gas purity and that cannot be foreseen.

Pure gases

In order to simplify the choice for the analyst, only two grades for helium, nitrogen, argon, hydrogen, oxygen, acetylene, nitrous oxide, and carbon dioxide (ALPHAGAZ 1 and ALPHAGAZ 2, **AIR LIQUIDE Corp.**) are proposed. The specifications of both pure gases are given in *Table 1*. The purity of these gases may be as high as 99.9995% (N₂) or 99.99999% (H₂). The large range of flow rate and pressure permits the gas to be fed to one or more analyzers. The typical specifications of

Table 1		
		Z 1 and ALPHAGAZ 2
Gases		
Ar, H ₂ , He, N ₂	H ₂ 0 < 3 ppm O ₂ < 2 ppm C _n H _m < 0.5 ppm	H ₂ O < 0.5 ppm O ₂ , C _n H _m , CO, CO ₂ < 0.1 ppm N ₂ < 0.1 ppm in Ar, He H ₂ < 0.1 ppm in Ar, He, N ₂
Air	H ₂ O < 3 ppm C _n H _m < 0.5 ppm	 H ₂ O < 0.5 ppm
0 ₂	H ₂ O < 3 ppm C _n H _m < 0.5 ppm	H ₂ , C _N H _m , CO, CO ₂ < 0.1 ppm N ₂ < 4 ppm NO _X < 15 ppb (typical analysis H ₂ O < 3 ppm
co ₂	H ₂ 0 < 20 ppm	C _n H _m < 2 ppm O ₂ < 2 ppm N ₂ < 8 ppm
C ₂ H ₂ N ₂ 0	N ₂ < 0.4% N ₂ < 0.4%	

Table 2	Specific	Μα οι	ximum Jtput	Maxiı outp	num out	generators		
Gas	Purity		v rate /min)	press (ba		Typical analysis		
Nitrogen	>99.99%	6 1	1–11	Up t	o 8.6	CO, CO ₂ , O ₂ < 1ppm H ₂ O < 2 ppm Hydrocarbons < 0.1		
ppm								
Hydrogen	>99.999	99% (0.15-0.55	6 Up t	o 4	Not applicable		
Air	Not appl	icable 1	I—30	Up t	o 8	Hydrocarbon (as CH ₄) < 0.1 ppm		
Table 3		_	• • • •					
ALPHAG	A7 MIY		e of ALI entration		AZ N	USes Uses		
			10% CH ₄ in argon Electr			on capture detector, X-ray scence, nuclear counter		
Hydrogen-			6 H ₂ in helium Fla		Flame	Flame ionization detector		
Hydrogen-	–argon	0.75–7%	% H7 in ar	gon	Spark	emission		

ALPHAGAZ FLO generators (**AIR LIQUIDE Corp.**) are given in *Table 2*. Analyzers that require special mixtures for working (e.g., X-ray fluorescence) are fed with ALPHAGAZ MIX grade (**AIR LIQUIDE Corp.**) (*Table 3*).

These specifications do not cover all the possible cases of critical impurities for a given analyzer or analysis; they are designed to ensure the quality of gas necessary for laboratory applications.

Recommendations

The analyzers presented in this paper are primarily dedicated to the analysis of liquid or solid samples. The impurities that can be contained in gases are only present in gaseous phase and as a result do not interfere with the majority of analyses that will be done. For this reason, use of ALPHAGAZ 1 or ALPHAGAZ FLO is recommended for most analyzers.

Table 4

Table 4		
Er	nission spec	
	Detect	ion level (mol/mol or wt/wt)
		1000 100 10 1
T. J. C.	C 0/	<1000 <100 <10 <1
Techniques	Gas %	ppm ppm ppm ppm
Inductively coupled plas	ma (ICP)	
Auxiliary plasma flow	Ar	ALPHAGAZ 1
Plasma flow	Ar	└───ALPHAGAZ 1 ──────
Optical detector (ICP-OES)*		
Purge of optical part	N ₂	ALPHAGAZ 1
Purge of optical part	N ₂	Halphagaz Flo
Mass spectrometer (ICP-MS)	-	
Auxiliary plasma flow	Ar	N∕A ⊢ ALPHAGAZ 1
Plasma flow	Ar	N∕A I── ALPHAGAZ 1──── N⁄A I── ALPHAGAZ 1────
Other		
Organic solvent analysis	0 ₂	Here Alphagaz 1
5 ,	Ηź	Here Alphagaz 1
Spark emission	2	
Plasma	Ar	⊢ _{ALPHAGAZ 1**} ⊣ ⊢ _{N/A} ⊣
	- 1–7% H ₂	HALPHAGAZ MIX H HN/A
Purge of optical part	N ₂	
Purge of optical part	-	⊢ALPHAGAZ 1 ⊣ ⊢N/A ⊣ ⊢Alphagaz Flo ⊣ ⊢N/A ⊣
	N ₂	· ALFIIAGAZ FLO · · N/A ·
GD (glow discharge) OE		
Plasma	Ar	N∕A ⊣ ALPHAGAZ 2 −−−
Purge of optical part	N ₂	N/A 🛏 ALPHAGAZ 1 ———
Purge of optical part	N ₂	N∕A ⊢ ALPHAGAZ FLO ——I
X-ray fluorescence		
Flow counter Ar-C	H ₄ (90–10)	⊢−−− ALPHAGAZ MIX −−−−−
	ixtures in He	ALPHAGAZ 1 ———————————————————————————————————
Detector cooling	N ₂	Liquid nitrogen ———
Liquid analysis	He	⊢ ALPHAGAZ Ĩ − − − − −
UV fluorescence		
Purge of optical part	N ₂	N∕A ⊣ ALPHAGAZ 1***
Purge of optical part	N2 N2	N/A I ALPHAGAZ FLO —
Analysis of Hg	Ar	N/A I ALPHAGAZ 1 I I I
	Air	$N/A \mapsto ALPHAGAZ FLO \longrightarrow$
Analysis of H ₂ S or sulfurs	Air	$N/A \longrightarrow ALPHAGAZ 1* \longrightarrow$
Analysis of H ₂ S or sulfurs		
Chemiluminescence or C		
Process gas	0 ₂	⊢ ALPHAGAZ 1 − − −
Process gas	Air	HALPHAGAZ FLO
Process gas	Air	H ALPHAGAZ 1***
0 ₃ analysis E	thylene	⊢N/A —
Flame spectrometry		
Sample introduction	A2	⊢ ALPHAGAZ1 → ⊢ N/A →
Flame	07	⊢ ALPHAGAZ 1⊣ ⊢ N⁄A ⊣
Flame	N ₂ 0	⊢ ALPHAGAZ 1⊣ ⊢ N/A ⊣
Flame	C ₂ H ₂	⊢ ALPHAGAZ 1−1 ⊢ N/A −1
*OF6	<u> </u>	· ····································

*OES, optical emission spectroscopy.

**ALPHAGAZ 2 in the case of nitrogen analysis.

***Special grade (e.g., POL or VEM) in the case of analysis below 1 ppm.

Table 5						
	Absorptic	on spec	trosco	py		
				/ (mol/ <100		tw/tw >
Techniques	Gas	%	ppm		ppm	ppm
Atomic absorption sp	ectroscopy	v (AAS)	••			••
(GFAAS)			3			
Graphite furnace	Ar	—		- ALPHAG	GAZ 1—	
Atomic absorption wi	th flame (
Flame C ₂ H ₂ /Air	Air	—		- ALPHAG	GAZ 1—	
Flame C ₂ H ₂ /Air	Air	—		ALPHAG	AZ FLO-	
Flame	CoHo	—		- ALPHAG	GAZ 1 —	
Flame C ₂ H ₂ /N ₂ O	ŇźÓ					
Flame C2H2/N2O	CoĦo	I		ALPHAC	GAZ 1-	
Hydride analysis	Ñ2			• ΔΙ ΡΗΔ(•	ia7 1—	
Hydride analysis	N2	—		ALPHAG	AZ FLO-	
Infrared (IR) spectros	-					
Purge or zero gas	N ₂	—		ALPHAG	GAZ 1*	
Purge or zero gas	N ₂	 		ALPHAC	AZ FLO	
FTIR spectroscopy	··2					
Purge or zero gas	N ₂	L		ALPHAG	\$\7 1* 	
Purge or zero gas	N ₂			- ALPHAG	λ7 FI Ο -	
Cooling of the MCT detect	4	—		· Liquid n	itronon -	
Elemental analysis of	-				iniogen	
N analysis: TCD**	C, O, N, He, Ar	-		GAZ 1—	I A I PH	1617 2
0 analysis: IR analyzer	He, Ar		_ ALI HAC _ AL PHAC	GAZ 1		AGAL 2 AGA7 9
C analysis: IR analyzer	0 ₂		- ALI HAC - AI PHAC	GAZ 1		AGAL 2 AGAT 9
S analysis: IR analyzer	02			GAZ 1-		AGAL 2 AGAT 9
H analysis: TCD	Ar, N ₂		- ALI HAC - AI DHAC	GAZ 1	—I ALI II —I AI DH	AGAL Z AGAT 9
	· 2		ALFIIAU	JAL I	IALEU	AUAL Z
Photoacoustic spectro	scopy (P/				, ,	
N ₂ for calibration		I	—— A	LPHAGA	<u>/</u>	—I
N/A					-	
Nuclear magnetic res		MR), el	ectron	parama	gnetic r	eso-
nance (EPR) or (ESR)	He			Liquid h Liquid n ALPHAC	ielium —	
Cooling	N ₂	·		· Liquid n	utrogen -	
Cooling	Air			ALPHAG	AZ FLO-	
Sample spinning		 		•		
RAMAN spectroscopy				ALPHAC		
Purge	N ₂			ALPHAG		
Purge	N_2	 		• Liquid r	itrogen -	
Cooling of the Ge detecto	r					
*ALPHAGAZ 2 in the	case of CC	O ₂ analy	sis (belo	ow 10 p	pm).	
**MCT, mercury cadmit	ım tellurid	e; TCD, 1	thermal	conduct	ivity de	tector.

Table 6

-	_
s spectron	
Gas	Grade
Ar, Xe	ALPHAGAZ 1 or standard grades
NH3, CH4, isobutane	ALPHAGAZ 1 or standard grades
Ar, N ₂	ALPHAGAZ 1 or standard grades
Ar, N ₂	ALPHAGAZ 1 or standard grades
Air, N ₂	ALPHAGAZ 1
Air, N ₂	ALPHAGAZ FLO
N ₂ , Hē	ALPHAGAZ 1
N2	ALPHAGAZ FLO
Air, N ₂	ALPHAGAZ 1
Air, N2	ALPHAGAZ FLO
He	ALPHAGAZ 1*
	Ar, Xe NH3, CH4, isobutane Ar, N2 Ar, N2 Air, N2 Air, N2 N2, He N2 Air, N2 Air, N2 Air, N2

*ALPHAGAZ 2 for low concentration analysis (below 10 ppm).

Table 7

	Thermal analysis	
Thermal analysis	Gas	Grade
Thermogravimetric analy (DSC)	ysis (TGA), differentic	al scanning, calorimetry
Inert gases	Ar, N ₂ , He	ALPHAGAZ 1
Process gases	0 ₂ , Air, H ₂ , SO ₂ .	ALPHAGAZ 1 or standard grades
Process or inert gases	Air, N ₂ , or H ₂	ALPHAGAZ FLO
Cooling	N2	Liquid nitrogen
Table 8		

Liquid o	r supercri	tical cl Detect	roma tion le	itograp vel (sa	hy mple in solution)		
			0.1	0.01	· 10 <1		
Techniques	Gas	g/L	g/L	g/L	mg/L mg/L		
Liquid chromatography (HPLC or LC)							
Purge of solvent	He			ALPHA(GAZ 1 ———————————————————————————————————		
Supercritical fluid chron							
Mobile phase			PHAGAZ	2 1 or SF	E or SFC grades –		
Supercritical fluid extraction (SFE)							
Mobile phase	C0 ₂	⊢ ALF	PHAGAZ	1 or SF	E or SFC grades 🕂		

Table 9

	Surface analysis	S
Surface analysis	Gas '	Grade
X-ray photoelectron spec chemical analysis [ESCA])		electron spectroscopy for
Sputtering gas	Ar	ALPHAGAZ 1
Cooling of the detector	N ₂	Liquid nitrogen
Auger electron spectrosco	opy (Auger or AES	5)*
Purging	N ₂	ALPHAGAZ 1
Cooling of the detector	N2	Liquid nitrogen
Electron microscopy (SEM	, TEM) [*]	
Purging	N ₂	ALPHAGAZ 1
Cooling of EDAX detector	N2	Liquid nitrogen
Specific surface (BET)*	-	
Cooling	N ₂	Liquid nitrogen
Surface measurement	N2	ALPHAGAZ 2
Surface measurement	Kŕ	N48
Zero adjustment	He	ALPHAGAZ 2

ALS, Auger electron spectroscopy; SEM, scanning electron microscopy; TEM, transmission electron microscopy; BET, Brunnauer, Emmett, and Teller method.

Nevertheless, for the analysis of very dilute samples, ALPHAGAZ 2 should be used to improve the baseline, particularly in cases involving the analysis of O, N, C in steel, or for the analysis of nitrogen in solids by glow discharge spectroscopy. For the analysis of atmospheric pollutants such as NO, NO2, or SO₂ by chemiluminescence or UV fluorescence, use of ALPHAGAZ 2 grade is suggested. For more assurance, certain grades such as pollution (POL) or Vehicle Emission Zero (VEM), which include specifications on these pollutants, may also be used. Similarly, two special grades of CO₂ have been developed for supercritical fluid chromatography applications (SFE [supercritical fluid extraction] and SFC [supercritical fluid chromatography] grades) that contain very low levels of heavy hydrocarbons. Except in these particular cases, ALPHAGAZ 1 and ALPHAGAZ FLO are usually the grades recommended.

Tables 4–11 list the most common analyzers using gas and the recommended grade. Only two grades of gas are necessary for supplying the most common laboratory analyzers. Furthermore, ALPHAGAZ FLO provides an alternative solution for supplying the gases, which are well adapted for some analyzers.

Table 10

	Othe	er ana	lysis			
		Dete	ction le	vel (sa	mple in s	olution)
			0.1	0.01	10	<1
	Gas	g/L	g/L	g/L	mg/L	mg/L
Water analysis (TOC,	TOX)*					
Oxidation or flushing	02	 	_ALPHA	GAZ 1 —	ALP	HAGAZ 2
Purging and desorption	N ₂ , He, Ar	—	_ALPHA	GAZ 1	jalp	HAGAZ 2
Purging and desorptionN	2	L		ЛІРНАС	, Az flo —	
Measurement of wat	er in solid	s (Kar	l Fische	r analys	sis)	
Water desorptionAir, N ₂			- 11 PH 1		—— ALP	HAGA7 2
Water desorption	Air, N ₂	Ĺ			AZ FLO -	
Metal analysis in pet	rochemistr	ry (Wi	ckbold 1	method)		I
Flame	02	—		ALPHAG	AZ 1	
Flame	H2	i		ALPHAG		
Flame	H ₂	i			AZ FLO-	
Stripping	N ₂			ALPHAG		
Stripping	N2 N2				AZ FLO -	
*TOC, total organic of	2)X, tot				

Table 11

		Gas an	alysis			
			Detec	tion leve	el (mol/	(mol)
Techniques	Gas	%	<1000 ppm	<100 ppm		<1 ppm
Hygrometry						
Purging or zero gas	N ₂	N/A	⊢ ALPH	IAGAZ 1–	-IALPH/	GAZ 2
Purging or zero gas	N2	N/A		ALPHAG	AZ FLO -	
Explosivity or tox	icity meas	uremen	ts			
Purge or zero gas	Air, N ₂	ŀ		ALPHAGA	zı —	—
Purge or zero gas	Air, N2	ŀ	—— A	PHAGAZ	FL0 —	—
Total hydrocarbon	(THC) me	asurem	ent			
Gas for flame	H2	F	– ALPHAGA	Z1 ⊢ A	LPHAGA	Z 2 🛏
Gas for flame Gas for flame	H2	ŀ	AL	PHAGAZ	FLO —	
Gas for flame	H ₂ /He	ŀ	—— AL			
Gas for flame	Air		– ALPHAGA			
Gas for flame	Air		I			
Measurement of C		lectroch	emical cel	ls coulor	netric o	r gal-
vanic or zircon cel	ls					
Purge or zero gas	N ₂	N/A ŀ		ALPHAG	AZ 1 —	—–I
Purge or zero gas	N2	N/A ŀ		ALPHAG	AZ FLO -	<u> </u>
Zero gas	Air	N/A P		ALPHAG	AZ I —	
Zero gas	Air	N/A r		ALPHAG	AZ FLO -	
Measurement of C Purge or zero gas Purge or zero gas Zero gas Zero gas) ₂ using p	aramag	netic cells			
Purge or zero gas	N ₂ Al	PHAGAZ	1 F		N/A —	
Purge or zero gas	N ₂ ALI	HAGAZ I	-10 –		N/A —	
Zero gas	Air Al	PHAGAZ			N/A —	!
					N/A —	
Measurement of H	1 ₂ using e	lectroch	emical cel	s		
Purge or zero gas	N ₂ Al	PHAGAZ	1 F		N/A —	
Purge or zero gas					N/A —	
Measurement of c			rochemical	cells		
	N ₂ Al					
Purge or zero gas	N ₂ ALF	PHABAZ I	-LO I-		N/A —	<u> </u>

Reference

1. Gastiger M, Jurcik B. Choosing the proper gas and gas equipment for the laboratory, part 1: relationship between gas purity and detection limits in gas chromatography. Int Lab 1999; 29(4A):18.

Dr. Gastiger is with the Pure Gases and Mixtures Analysis and Laboratory Market, and Dr. Jurcik is Group Manager, Application of Gases for Electronics and Laboratories, **AIR LIQUIDE Corp.**, Claude-Delorme Research Center, BP 126, 78354 Jouy-en-Josas, Cedex, France; tel.: (33) 1 39 07 62 44; fax: (33) 1 39 07 64 66; e-mail: benjamin.jurcik@ airliquide.com.